Biomimetic design of monolithic fuel cell electrodes with hierarchical structures

نویسندگان

  • Rongyue Wang
  • Drew C. Higgins
  • Dong Un Lee
  • Sagar Prabhudev
  • Fathy M. Hassan
  • Victor Chabot
  • Gregory Lui
  • Gaopeng Jiang
  • Ja-Yeon Choi
  • Lathankan Rasenthiram
  • Jing Fu
  • Gianluigi Botton
  • Zhongwei Chen
چکیده

Despite the significant improvement of polymer electrolyte membrane fuel cell catalyst activities, a cost-effective and stable membrane electrode assembly is still lacking, which greatly inhibits the commercialization of this efficient and environmental friendly technology in stationary and transportation applications. The main reason is that the engineering of different components of an electrode, such as catalytically active metals, electron transport and reactant diffusion paths in a compatible way is very challenging. Here we show the design and preparation of a monolithic fuel cell electrode with a compatible wire on wire structure that mimics the configuration of a pine tree. We developed a procedure to make a flexible carbon thin film composed of porous nanofibers with a thickness of $ 100 nm and centimeter scale lengths. Platinum nanowires (ca. 3 nm diameter) were deposited on these microscale carbon nanofiber films, resulting in a hierarchical structure. The platinum nanowires were then decorated with a porous bismuth coating to modulate the atomic structure and induce catalytic activity toward formic acid electrooxidation. The end result is a monolithic structure used as a fuel cell electrode that combines microscale diffusive pathways and nanoscale catalyst structures. Prepared by a process that is readily scalable, this design strategy offers a new way to tailor catalytic functions at a system level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization

Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

A new approach to microstructure optimization of solid oxide fuel cell electrodes

Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...

متن کامل

Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....

متن کامل

Impact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode

Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016